

SPUX7N60S5 SPDX7N60S5

Cool MOS[™] Power Transistor

- N-Channel
- Enhancement mode
- Ultra low gate charge
- Avalanche rated
- dv/dt rated
- 150°C operating temperature

1	2	3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Marking	Package	Ordering Code
SPUX7N60S5	600 V	0.8 A	6 Ω	X7N60S5	P-TO251-3-1	-
SPDX7N60S5					P-TO252	-

Maximum Ratings, at $T_i = 25 \text{ °C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Drain source voltage	V _{DSS}	600	V
Continuous drain current	I _D		A
$T_{\rm C} = 25 \ ^{\circ}{\rm C}$		0.8	
$T_{\rm C} = 100 \ ^{\circ}{\rm C}$		0.5	
Pulsed drain current	I _{D puls}	1.6	
T _C = 25 °C			
Avalanche energy, single pulse	E _{AS}	tbd	mJ
$I_{\rm D}$ = 0.8 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 Ω			
Avalanche current (periodic, limited by/ _{jmax})	I _{AR}	tbd	A
Avalanche energy (10 kHz, limited by/ _{jmax})	E _{AR}	tbd	mJ
Reverse diode dv/dt	d <i>v</i> /dt	6	KV/µs
<i>I</i> _S = 0.8 A, <i>V</i> _{DS} < <i>V</i> _{DSS} , d <i>i</i> /d <i>t</i> = 100 A/µs,			
<i>T</i> _{jmax} = 150 °C			
Gate source voltage	V _{GS}	±20	V
Power dissipation, $T_{\rm C} = 25 ^{\circ}{\rm C}$	P _{tot}	11	W
Operating temperature	Tj	-55+150	°C
Storage temperature	T _{stg}	-55 +150	
IEC climatic category; DIN IEC 68-1		55/150/56	

Electrical Characteristics

Parameter	Symbol	Values			Unit
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.	
Thermal Characteristics					
Thermal resistance, junction - case	R _{thJC}	-	-	11	K/W
Thermal resistance, junction - ambient	R _{thJA}	-	100	-	
(Leaded and through-hole packages)					
SMD version, device on PCB:	R _{thJA}				
@ min. footprint		-	tbd	-	
@ 6 cm ² cooling area ¹⁾		-	tbd	-	

Static Characteristics

Drain- source breakdown voltage	V _{(BR)DSS}	600	-	-	V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}				
<i>I</i> _D = 30 μA, <i>T</i> _j = 25 °C		2	3	4	
<i>I</i> _D = 30 μA, <i>T</i> _j = 150 °C		tbd	-	-	
Zero gate voltage drain current, $V_{DS} = V_{DSS}$	I _{DSS}				μA
$V_{\rm GS} = 0 \rm V, T_{\rm j} = -40 ^{\circ} \rm C$		-	-	0.1	
$V_{\rm GS} = 0 \text{V}, T_{\rm j} = 25 ^{\circ}\text{C}$		-	0.5	1	
$V_{\rm GS} = 0 \text{V}, T_{\rm j} = 150 ^{\circ}\text{C}$		-	-	tbd	
Gate-source leakage current	I _{GSS}	-	10	100	nA
$V_{\rm GS} = 20 \text{ V}, V_{\rm DS} = 0 \text{ V}$					
Drain-Source on-state resistance	R _{DS(on)}	-	tbd	6	Ω
V _{GS} = 10 V, <i>I</i> _D = 0.5 A					

¹ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter	Symbol	Values			Unit	
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.		
Characteristics					•	
Transconductance	<i>9</i> fs	-	tbd	-	S	
$V_{\text{DS}} \ge 2 * I_{\text{D}} * R_{\text{DS(on)max}}, I_{\text{D}} = 0.5 \text{ A}$						
Input capacitance	C _{iss}	-	90	tbd	pF	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$						
Output capacitance	C _{oss}	-	57	tbd		
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$						
Reverse transfer capacitance	C _{rss}	-	3	tbd		
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$						
Turn-on delay time	t _{d(on)}	-	tbd	tbd	ns	
$V_{\rm DD}$ = 350 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.8 A,						
$R_{\rm G} = 100 \ \Omega$						
Rise time	t _r	-	tbd	-		
$V_{\rm DD}$ = 350 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.8 A,						
$R_{\rm G} = 100 \ \Omega$						
Turn-off delay time	t _{d(off)}	-	tbd	tbd		
$V_{\rm DD}$ = 350 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.8 A,						
$R_{\rm G}$ = 100 Ω						
Fall time	t _f	-	tbd	-]	
$V_{\rm DD}$ = 350 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.8 A,						
$R_{\rm G}$ = 100 Ω						

Electrical Characteristics

Parameter	Symbol	Values			Unit
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.	
Gate Charge Characteristics			•		
Gate-source charge	Q _{gs}	-	tbd	-	nC
$I_{\rm D} = 0.8$ A, $V_{\rm DD} = 400$ V					
Gate-drain charge	Q _{gd}	-	tbd	-	
$I_{\rm D} = 0.8$ A, $V_{\rm DD} = 400$ V					
Total gate charge	QG	-	3	tbd	
V_{DD} = 400 V, I_{D} = 0.8 A, V_{GS} = 0 to 10 V					
Reverse Diode Continuous source current $T_{\rm C} = 25 ^{\circ}{\rm C}$	I _S	-	-	0.8	A
Pulsed source current $T_{\rm C}$ = 25 °C	/ _{SM}	-	-	1.6	
Inverse diode forward voltage $V_{GS} = 0 \text{ V}, I_{F} = 0.8 \text{ A}$	V _{SD}	-	tbd	1.2	V
			44		+
Reverse recovery time V _R = 100 V, I _F =I _S , d <i>i</i> _F /d <i>t</i> = 100 A/µs	t _{rr}	-	tbd	-	ns

Edition 7.97

Published by Siemens AG, Bereich Halbleiter Vetrieb, Werbung, Balanstraße 73, 81541 München © Siemens AG 1997

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes a type of component and shall not be considered as warranted characteristics. Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

1)A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

2)Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or